

Definitions, Theory and Applications

Presented by: Jason Geagan, National Sales Manager US Draft Co Fort Worth, TX

US DRAFT CO.

A Divison of **R.M. Manifold Group, Inc.**

Boiler Venting

Gas Appliance Listings

-ANSI Z21 - Categorized Appliances Gas fired low pressure steam and hot water boilers

-UL795 - Building Heating Appliances Commercial-Industrial Gas Heating Appliances

Gas Appliance Listings

Definitions

3.3.80* Gas Appliance Categories. Vented gas appliances are classified for venting purposes into four categories as follows:
(1)Category I – An appliance that operates with a non-positive vent static pressure and with a vent gas temperature that avoids excessive condensate production in the vent
(2)Category II –An appliance that operates with a non-positive vent static pressure and with a vent gas temperature that may cause excessive condensate production in the vent
(3)Category III – An appliance that operates with a positive vent static pressure and with a vent gas temperature that avoids excessive condensate production in the vent
(4)Category IV – An appliance that operates with a positive vent static pressure and with a vent gas temperature that may cause excessive condensate production in the vent

A.3.3.80 Gas Appliance Categories. For additional information on appliance categorization, see the appropriate Z21 and Z83 American National Standards.

ANSI Z223.1 - Venting Categories

Non-Condensing ~80-84% Efficiency

Positive

85%+ Efficiency Condensing

ANSI Z223.1 - Venting Categories

Type 'B' Gas Vent is the most common venting material for Category I Appliances

Specification: UL-441 B-Vent

Negative

Non-Condensing ~80-84% Efficiency

85%+ Efficiency Condensing

Positive

<u>Double Wall</u> Special Gas Vent is the most common venting material for Category II, III & IV Appliances

Specification: UL-1738 Special Gas Vent

Using PVC to Vent Flue Gases

At present there is little data available on the safety or durability of plastic pipe products used to vent combustion gases. The ASTM has not addressed this application, and the available data is insufficient for the plastic pipe and fitting industry to develop consensus specifications or guidelines. Equipment manufacturers are most knowledgeable about their own products and are bestequipped to determine how their gas-fired heating equipment should be vented. Accordingly, frequency for the suitability of plastic piping systems to vent combustion gasses be directed to the manufacturer of the water or space heating equipment being installed.

UL795 - NFPA 211 Appliances

Definitions

3.3.3.6 *Nonresidential Appliance, 1400°F*. A commercial, industrial, or institutional appliance needing a chimney capable of withstanding a continuous flue gas temperature not exceeding 1400°F (760°C).

3.3.3.8 *Nonresidential, Low-Heat Appliance*. A commercial, industrial, or institutional appliance needing a chimney capable of withstanding a continuous flue gas temperature not exceeding 1000°F (538°C).

UL103 Pressure Tested Chimney

304SS or 316SS inner wall Galvalum/Aluminized, 304SS or 316SS outer wall Pressure tested up to 60"WC 1" air to 4" fiber insulation

Sizing Gas Appliance Vents

ASHRAE Handbook **Fundamentals** 2017

I-P and SI Editions

Basic Principles, Data, and Guidance or

- Psychrometrics
 Heat transfer
- Sound and vibration
 Building envelope
- Cooling and heating load calculation
 Duct and piping system design
 Refrigerants
 Energy estimating and resources
 Sustainability and more

Supported by ASHRAE Research SBN 978-1-939200-59-4

> © 1791 Tullie Circle N Tolophore (

www.ashrae.org

ASHRAE Chimney Design Equation

The equations and design chart may be used to determine the vent or chimney size based on steady-state operating conditions $I = 4.13 \times 10^{5} (d_{i}^{2}/M) (\Delta pT_{m}/kB)^{0.5}$ I = Input, Btu/h $d_i = Inside Diameter, in.$ M = Ratio of Mass Flow to Heat Input $\Delta p = Pressure Loss, "w.c.$ $T_m =$ Mean Flue Gas Temperature, °R k = Resistance Coefficients B = Barometric Pressure, inHg

ASHRAE Chimney Design Equation

The equations and design chart may be used to determine the vent or chimney size based on steady-state operating conditions

- I = Input, Btu/h $d_i = Inside Diameter, in.$ $\Delta p = Pressure Loss, "w.c.$ k = Resistance Coefficients
- B = Barometric Pressure, in Hg

 $I = 4.13 \times 10^{5} (d_{i}^{2}/M) (\Delta pT_{m}/kB)^{0.5}$

M = Ratio of Mass Flow to Heat Input $T_m =$ Mean Flue Gas Temperature, °R

Does not consider modulation, cycling, or time to achieve equilibrium flow conditions from a cold start

ASHRAE Equation Determine Pressure Loss

Determine the Pressure Loss $\Delta p = (k p_m V^2)/10.4g$

> Δp = Pressure Loss, "WC k = Total System Resistance p_m = Gas Density, lb/ft³ V = Gas Velocity, FPS g = gravity, 32.174 ft/s²

Pressure losses are directly proportional to the resistance factor and to the square of the velocity.

ASHRAE Equation Determine Pressure Loss

Theoretical draft increases directly with height and the difference between ambient and flue gas temperatures

Determine the Theoretical Draft $D_{t} = 0.2554BH(1/T_{o} - 1/T_{m})$

 $T_m = Mean Flue Gas Temperature, °R$

ASHRAE Equation Determine Pressure Loss

Determine the Theoretical Draft 0.098'' wc = 0.2554(29.92)(20)((1/520)-(1/780))Determine the Theoretical Draft 0.079'' wc = 0.2554(29.92)(20)((1/520)-(1/710))Determine the Theoretical Draft 0.039'' wc = 0.2554(29.92)(20)((1/520)-(1/600))

Theoretical draft increases directly with height and the difference between ambient and flue gas temperatures

Effect of Chimney Height vs Outdoor Temp

	0°F				
WC	032"WC			A	
VC	131"WC			20'	
VC	320"WC		5'		
		SASS!		дт	

Barometric Dampers

Variations of Draft, Common Vent

Variations of Draft, Common Vent Category I

0.25				
0.20				
0.15				
0.10				
0.05				
0.00				
-0.05				
-0.10				
-0.15				
-0.20				
-0.25				and the second
	of the second se	2 V		3 S
BOI		Boille	BOI	

Variations of Draft, Common Vent Category II & IV

Manufacturer A: -0.25" / +0.25" w.c.

Manufacturer C: -0.10" / +1.25" w.c.

Manufacturer B: -0.25" / +0.50" w.c.

Manufacturer D: -0.10" / 0.00" w.c.

Variations of Draft, Common Vent

EC Flow TechnologyTM

Common Code Violations

(b) Termination More Than 10 ft (3 m) from Ridge, Wall, or Parapet

12.7.2 Gas Vent Termination. The termination of gas vents shall comply with the following requirements:

(1)A gas vent shall terminate in accordance with one of the following:

(a)Gas vents that are 12 in. (300 mm) or less in size and located not less than 8 ft from a vertical wall or similar obstruction shall terminate above the roof in accordance with Figure 12.7.2 and Table 12.7.2.

(b)Gas vents that are over 12 in. in size or are located less than 8 ft from a vertical wall or similar obstruction shall terminate not less than 2 ft above the highest point where they pass through the roof and *not less than 2 ft (0.6 m) above any portion of a building within 10 ft (3.0 m) horizontally.*

Common Code Violations

Lower Terminations with Draft Inducer

Common Code Violations

13.1.9 Vertical Vent Upsizing/7 × Rule. Where the vertical vent has a larger diameter than the vent connector, the vertical vent diameter shall be used to determine the minimum vent capacity, and the connector diameter shall be used to determine the maximum vent capacity. The flow area of the vertical vent shall not exceed seven times the flow area of the listed appliance categorized vent area, flue collar area, or draft hood outlet area unless designed in accordance with approved engineering methods.

Common Code Violations

12.4.3.3 Forced draft systems and all portions of induced draft systems under positive pressure during operation shall be designed and installed so as to prevent leakage of flue or vent gases into a building.

12.4.3.4 Vent connectors serving appliances vented by natural draft shall not be connected into any portion of mechanical draft systems operating under positive pressure.

Common Venting - Good Practices

b. Static Regain method
 Not Recommended

Common Venting - Good Practices

Overdraft

Effect of Chimney Height vs Outdoor Temp

Manufacturer A: -0.25" / +0.25" w.c.

Manufacturer C: -0.10" / +1.25" w.c.

Manufacturer B: -0.25" / +0.50" w.c.

Manufacturer D: -0.10" / 0.00" w.c.

Concerns of Mechanical Draft

In most cases, equipment costs can be offset by less vent material and smaller

1. Cost 2. Complication In most cases, equipment manufacturers work together to minimize complications

1. Cost 2. Complication 3. Single Point of Failure

1. Cost 2. Complication 3. Single Point of Failure

Concerns of Mechanical Draft

Redundancy systems can be designed to prevent single failure point

Individual Connector Draft System

Questions and Comments

Thank You!

